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1.0 INTRODUCTION~

The following report summarizes the work done on a one year research

project on microwave acoustic devices, principally topics related to the

thin film resonator, TFR.

Prior and concurrent work supported by AFOSR was on thin film materials

of ZnO, AlN, and LiNbO3 deposited by the sputtering process. These films

were evaluated in the TFR device configuration. In the course of the

materials program, it became apparent that the TFR is a potentially valuable

device per se whose device physics problems need further study.

Device physics problems of the TFR that required further study are the

multidimensional boundary value problem of microwave acoustic modal

analysis, temperature and aging effects, and limits of TFR performance in

44 the 1-2 GIz frequency range.

Because of the limited duration of this project (one year), the topics

had to be limited to the personnel and prior experience resources available.

In particular the two dimensional numerical analysis of the TFR had been

formulated but needed further refinement. A prior project from RAD that

had initiated a study of doping effects on acoustical properties in GaAs was

followed here by a study of deep Zn diffusions. Finally, a study of

acoustical mode trapping effects was initiated in order to determine the

lower limits of resonator Q in the 1-2 GHz frequency range. Because of the

limited duration of funding only MSEE degree level efforts could be

supported.

The next three sections is a summary of the projects and progress made

during the one year of funding.

. ~* LL.-. . . - . 1* ... . %- %- .~: ~ - .
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2.0 HIGH Q RESCNATORS

2.1 Introduction

Resonator Q is an important parameter that characterizes resonator

performance in oscillator and filter circuits. The resonator Q is related

to the quality of the material and topology of the films.

The thin film resonator is a material composite in the configurations

shown in Figs 2.1 and 2.2. Research efforts were directed toward improving

the Q of the Si base resonators by adjusting sputtering conditions to

improve film quality and electrode design in the configuration of Fig 2.1.

2.1.1 Film Substrate Evaluation

The most definitive piezoelectric film evaluation is the measurement of

the film's piezoelectric coupling coefficient and Q.

Measurements of unloaded Q are inferred from the resonator impedance as

derived from transmission line reflection coefficient data measured on an HP

8510T network analyzer. The resonator Q is calculated from the measured

impedance data using the relation

fr dZ+
Qm 2 df 'fr

where Z+ is the phase of the impedance and fr is the resonant frequency

defined implicitly as the frequency of maximum Q.

The electromechanical coupling coefficient K2 of a resonator is also an

important quantity for filter synthesis applications because it affects the

filter performance in two ways. First, the pole-zero separation is

dependent upon K2 with larger K2 being capable of synthesizing wider

bandwidths. Second, the resonant series resistance is scaled by K2 and the

.. ' V
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capacitive reactance of the structure. For a one dimensional resonator

which has a very large diameter to thickness ratio, the coupling coefficient

is determined from

K2 . *r/tan~r

where

r 2 fs/fp

fs - series resonant frequency

fp- parallel resonant frequency

The K2 determined from this relation for nonideal resonators is

referred to as an effective K2 since the value is not simply related to

fundamental material parameters.

The best method of measuring these macroscopic film properties is to

use a resonator in one of the accepted configurations. In all such cases

the measurement is subject to artifacts due to the measuring structure.

These macroscopic factors are discussed below.

Energy Trappin . The degree of energy trapping is a function of the device

geometry and specific resonant mode. Resonator Q is a function of energy

trapping and measurements indicate a minimum material Q for a specific mode.

Thus, a resonator structure that allows transverse acoustic radiation along

the membrane and into the substrate would exhibit a lower Q.

Electrode Netallization Effect. Resonator acoustic losses are increased by

the relatively high acoustical loss in metals compared to the piezoelectric.

Thinner metal electrodes reduce mechanical losses but increase the

electrical resistance. Note that increased metal thickness immediately
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within to the resonator will cause the wave to migrate to the thicker or

slower structure and hence lead to trapping. The electrode resistance

effect is most pronounced at series resonance where large displacement

currents in the piezoelectric must flow through the electrode metal. This

affect is observed as a lower series resonant Q as compared to parallel

resonance Q.

Geometrical Defects. Surface contamination reduces resonator Q and causes

frequency shifts. Etching imperfections such as Pits or hillocks give false

resonator operation due to mode shifts and scattering losses.

Stray Capacitance. Stray capacitance in the electrodes appear in parallel

with resonator and causes the parallel resonant frequency to decrease. The

reduced pole-zero spacing reduces the apparent coupling coefficient and

lowers the achievable filter bandwidth.

Interpretation of Q and K2 measurements must be done with some caution.

The K2 as defined by the phase slope definition of series and parallel

resonance may depart from the material K2 for low Q resonators.

Consequently, a change in material growth conditions or resonator geometry

that appears to have increased K2 may in reality have reduced Q and the

resultant spread in phase incorrectly interpreted as increased material K2.

In order to evaluate films with the least ambiguity we have adopted the

following procedures:

1. Films not in resonator configurations or deposited over the whole

wafer are optically examined by Normarski microscopy, x-ray diffraction, and

when appropriate Auger chemical analysis (to determine oxygen in AIN to 0.1%

levels) or electron microscopy.

A L9
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2. Resonator film structures are first examined by Normarski phase

contrast microscopy to find structural defects and subsequent electrical

evaluation is done by one-port microwave reflection measurements. From the

electrical data, series metallization resistance, series and parallel

resonant frequencies and respective Qs, and finally, the uncorrected

piezoelectric coupling coefficient are obtained.

2.1.2 Resonator Analysis and Modeliny

Resonator analysis and modeling takes two basic forms. These are the

one-dimensional models used for ideal resonators and the approximate lumped

element circuit models (Butterworth Van Dyke) used for some synthesis

applications. Only the one dimensional Mason model (Fig. 2.3) can be

derived from first principles. A two dimensional numerical analysis based

.-' model is described in section 3.0.

The one dimensional Mason model is extremely useful because it can be
used to model the performance of a single mode, and with modification,

multimode two and three dimensional resonators. Basically, the Mason bulk

wave model treats the piezoelectric plate as a three port network having one

electrical port and two acoustical ports.

2.2 Experimental Results

The measured results shown in Fig. 2.4 were for an AIN/p+Si membrane

resonator fabricated by selective etching of the Si membrane followed by dc

planar magnetron deposition of the AlN. Series resonance Q was

approximately 1500 and parallel resonance Q was 5000. The decreased series

Q was found to be due to a finite (one ohm per square) sheet resistance in

the metal electrode.
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However, energy trapping was still accomplished by the electrode

structure as evidenced by the high Q and multitude of anharmonic resonances.

Thus the research goal of demonstrating energy trapping was accomplished.

F7
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3.0 MASKED DEEP ZINC DIFFUSIONS IN GaAS

3.1 Introduction

Temperature compensation, TC, of thin film resonators is an important

feature for eventual device applications. In composite resonators TC can be

accomplished by a positive-to-negative balance between two or more layers in

the structure. This occurs in the composite resonators using pt silicon as

a support structure. The experimental results 1 and theory2 for this case

are well documented.

The objective of this task was to evaluate similar effects in heavily

doped GaAs structures. Previously, on an RADC project, we had evaluated

purchased GaAs wafers that had been doped during growth. However, the as

grown GaAs could not be doped sufficiently to achieve the high carrier

concentrations necessary for the observation deformation potential coupled

temperature effects and accordingly this study of diffusion in GaAs was

initiated.

In order to evaluate the diffused layers, it was necessary to employ

selected area diffusions and surface acoustic wave measurements. The

project then became one of studying masked deep zinc diffusions in GaAs.

3.2 Results and Conclusions

The full details of the work are given in the MSEE thesis of G. Tuttle.3

The following summary is taken from the thesis.

A capsule diffusion system for diffusing zinc into GaAs has been built

and carefully characterized. The system satisfactorily forms heavily doped

zinc layers in GaAs. Such deep, heavily doped layers are not possible with

ion implantation. In addition, it has been shown that reactively sputtered

V
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silicon nitride, in conjunction standard wet chemistry processing, serves as

an adequate masking material to confine the zinc diffusions to selected area

of a GaAs wafer. Replacement of the wet etching with plasma etching to

eliminate the anomalous lateral diffusion effects observed will make silicon

nitride a truly excellent masking system.

Also, using the capsule system, several attempts were made at

performing n-type diffusions using tin and sulfur as the donor material.

Though unsuccessful, these experiments provided some insight into what type

of diffusion system might be used for performing n-type diffusion in GaAs.

The question naturally arises as to what value the zinc diffusions are

without the n-type diffusions needed for fabricating high performance GaAs

transistors. Perhaps the most obvious use is in making pt contacts to

electronic devices having p-layers as part of their structure. In addition,

other semiconductor devices such as lasers, LEDs, and GaAs solar cells need

diffused layers and ohmic contacts.

If GaAs substrates are available with an n-type doping of 10-16 cm-3 or

less, the zinc diffusions and silicon nitride masking can immediately be

applied towards making a self-aligned metal insulator semiconductor field

effect transistor (MISFET). All that is needed is to diffuse the source and

drain regions through a SiNx mask, deposit and pattern the gate, source, and

drain metal concurrently, and an enhancement-mode p-channel MISFET is

finished in two simple steps. The SiNx between the source and drain serves

double duty as a diffusion mask and gate dielectric. Albeit, this is a low

frequency device, but it would still have application as a biasing element

or active load in a high frequency digital or microwave circuit.

The zinc diffusions and SiNx masking could also be used in conjunction

with ion implanted n-type layers as the diffused gate of a JFET. The JFET

should have certain advantages over the MESFET. The JFET should be a higher
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frequency device, with diffusion the pinch-off voltages should be more

reproducible from device to device and wafer to wafer, and the JFET should

be able to tolerate larger voltage swings at the gate.

Also, using the Gaussian type diffusions that were demonstrated, p-

channel MESFETs and JFETs (if used with an n-type implanted gate) should be

possible. However, more work is required in characterizing these Gaussian

diffusions.

One last application is related to the acoustic properties of GaAs. It

has been shown both theoretically and experimentally that the temperature

dependence of the elastic constants of silicon changes when the silicon is

heavily doped with boron. This can be used to form signal processing

devices .-hat do not change characteristics as the temperature changes. It

would be very desirable to do this with GaAs. In ongoing experiments, the

temperature dependence of both doped and undoped GaAs is being measured

using surface acoustic waves traveling in undoped and heavily zinc-doped

GaAs. If GaAs shows the same change in temperature dependence that silicon

does, temperature compensated acoustic devices on GaAs will become possible.

1. F.S. Kahn and P.B. Allen, "Temperature Dependence of the Elastic
Constants of p+ Silicon," Phys. Stat. Sol.(b) 128, 31 (1985).

2. J.S. Wang and K.M. Lakin, "Low-Temperature Coefficient Bulk Acoustic Wave
Composite Resonators," Appl. Phys. Lett. 40(4), 15 Feb. 1982.

3. G. Tuttle, "A Technique for Silicon Nitride and Aluminum Nitride Masked
Deep Zinc Diffusions in Gallium Arsenide," Iowa State University, 1985.
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4.0 FINITE DIFFERENCE CALCULATIONS

4.1 Introduction

In order to treat a general class of piezoelectric excitation

problems, a finite difference formulation has been developed to study the

two dimensional coupled piezoelectric wave equation [3]. The formulation

allows for three displacement components and an electric potential,

complicated boundary configurations, and arbitrary material anisotropy.

This study will test the formulation on a specific resonator structure.

Some simple geometrical structures have been analyzed by others

using different methods such as plate wave mode expansions. These

methods however, assume infinite dimensions in some particular directions

and/or have restricted boundary conditions [6,7,9,10, and 12]. They can

not account for changes in material thickness and require material

uniformity throughout the region.

4.2 Development of the Numerical Method

The theoretical development of the finite difference formalism

starts from the general point form linear elastic equations for arbitrary

anisotropy,

__ T n-P u (4.1)~xi ii j

D -0 (4.2)

"x 1  il

T3. C u4 43
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D au kL . (4.4)
i  ei,kl ax I . xl x I

For resonator analysis, the time harmonic assumption is employed, as in

the one dimensional case, although there are numerical methods for

solving time dependent wave equations as well.

The two dimension plane will be the xl, x2 plane with x3 normal

to it. No spatial variations are allowed along x3. Equation (4.1) can

then be rewritten,

T (T P 2 u(4.5)
1  2

The left hand side of Eq. (4.5) can be written as a cross product by

defining a vector 0 where

O(i) 1 (i)x + 0 2 (i)x 2  (4.6)

and

0 1 -T2j

1 j

Then,

Vx (j) (4.7)

Equation (4.7) can be written in the xI, x2 plane as

is Vx 0().dg - W2 P uj edg (4.8)
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where
dS - dxIdx2  .

The result of having the left hand side of Eq. (4.8) in the form of a curl

operation, allows a direct integration using Stoke's theorem. This

reduces the expression by one order to a line integral of the stress

components around a closed path in the 1, 2 plane,

u (J)-di = - P.2..ujdx 1 dx 2 . (4.9)

Physically, those integrals correspond to finding the net force on the

material region.

An expression for O J ) and 0 Q ) can be found by expanding Eq.

(4.3) using the corresponding subscripts,

i t.
.

0 (J) -- T -C uk C Uk

" 2j "- kl ' - Cjk2 x- 2 ejk, - -2j,2 B"2

and

0 -T Ck + 2TIj = ljkl axI  jk x 2  1J x I  l2Bx 2

Ihe above equations can be reduced to

0-- -b (4.10)1 jk ix1  jkx 2

and

02 ) a k +d - (4.11)
2aJk ax, jk ax2

4~ ~ * ;."4:z
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by letting

"ajk = C2jk1 k-1,2,3

ajk = e-2J, k-4

bjk - C2jk2 k-1,2,3

bjk = e2j,2 k-4

cjk = Cljkl k-1,2,3

Cjk = elj,l k4

djk - Cljk2 k-1,2,3

djk = elj,2 k - 4

where j = 1,2,3

and u4  1I.

Similarly, Eq. (4.2) can be rewritten as

- D - -- (-D2) -0. (4.12)

By defining a vector P to be

P1x- + P2x2

where P1 I -D2 and P2 - Dit

Equation (4.12) can be written as the cross product

x )-0

and using Stoke's theorem as

d - . (4.13)

i,.
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The expressions PI and P2 can be expanded with the use of Eq. (4.4),

P Uk _ +uk a f4

P 2 2,kl ax1  21 axI  e2,k2 x + 22 2x 2

DUk + auk-

2 elkl ax 1  11 xI e 1,k2 ax2  12 x (4.15)

Reducing the above equations,

au kaukuk uk
P -- a b (4.16)1 jk ax1  J x2

P2  uk + d a (4.17)2 jka'5X1  jk 7x

where

ajk e2,kl k-1,2,3

a jk - C21 k-,4

bjk = e2,k2 k-1,2,3

bjk m '22 k=4

Cjk b e ,k1 k-1,2,3

Cjk = -C11 k=4

djk = e1,k2 k-1,2,3

d -ck-4
jk = -E12

j = 4 and u-4

The subscript arrangement of Eqs. (4.10), (4.11), (4.14), and (4.15)

allows those four equations to be written as

ol(.) auk ()ug -- ba. - (4.18)

01X1 j T2

j.
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cjk c +d tiak (4.19)

where J-1,2,3,4 and k-1,2,3,4,

and the total vector Q is

Q1 x 1 + Q2( 2

which represents the sum of Eqs. (4.10), (4.11), (4.14), and (4.15). The

material tens ors ajk , bjk, Cjk , and djk are as previously defined.

Thus, there are four line integrals of the form

SQ dT - fQ2dx2 + JhI dx , (4.20)

composed of 16 terms in each of 4 regions for a total of 256 integrals,

and three area integrals from Eq. (4.9) since the right hand side of Eq.

(4.13) is zero.

To evaluate the line integral given by Eq..(4.20) consider the

geometry shown in Fig. 4.1. The right hand side of the equation can be

written as

b c d e f
dT fo 2  dx I + 02ddx2 + fS 2dx 2a b c d

h a
%Qdx 1 + f Q dx1 + S 0 dx (4.21)
f g h

where the subscripts have been dropped and the integration limits refer

to the various line segments in the four material regions, denoted bye,

®, , and(, of Fig. 4.1.

Jil
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I 2
2

(I, J-1) (I,J) 0 (1, J+j) X

4*1

Fig. 4.1. A rectangular sampling grid in the 1,2 plane showing the
method of labeling mesh points and material regions. The line
integral is carried out along the a-b-c-d-e-f-gha path and
the area integral within the region defined by the line. The
encircled numbers refer to a particular quadrant and its
corresponding material constants (9,e, C, e)
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Using Eqs. (4.18) and (4.19) the right hand side of Eq. (4.21) can

be evaluated and written as a function of a, b, c, and d, and the

.particle displacement and potential fields. For notation simplification

purposes, the mesh paints will be referred to as:

(lJ) 0

(1,3+1) I

(1+1,3) 2

(1,J-1) 3

(1-1,J) 4

The terms involving Q., will be evaluated first,

b b b4~
Q Qdx (Da dx + dQ- dx
2 22 c x 2 S aa a a ~

u. h u() x2 1 2/ + R- (u(b) -u(a))

1 0

NOuC) -u(O) ) CO h 2+ u(2) - uCO) (4.22)2h1  2

where, in general,

du . u(i) -u(O)

dx h i

i - 1-4,

and because the points are sufficiently closed together,

u(b) . u(2) + u(l)
2
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and

u(a) - u(M) + u(O)
2

In a similar way,

a M u(L) - 0
S Q2 dx - c&)( h ) 2  + cu(a) -u(h))
h, _h 4 /2

- (u(M) - u(O)) h 4 + (u(O) - u(4) (4.23)2h1  2

where

u(h) - u(4 ) + u(1)
2

J Q2dx2  ) x21 + cg ) - u(d))
d h 2 /2

22-uWO) - u(3)) A)h 2 +iz u(0) - u(2)

(4.24)

where

u(e) - u(3) + u(O)
2

and

u d') u(3) + u(2)u(d) 2

, -% 2
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f f = u(O) - u(3) -h4 /2
Sx 2  + A (u(f) ue))
e 3 0

~4- u(o) (.5
(u() - u(3)) 4(-I) + u(4) (4.25),., 3.2

where

u(3) + u(4, ' ~u(f)-()
2

The terms involving 01 can be evaluated in a similar fashion,

b I Q dx 1 -- a B dx1 - j b B u dx
b 1b ax11 b Bx2 1

"/ (2) - (0) C=0
(D (u(c) - u(b)) - (  - ) b

h 2 - -h / 2

- ()(O) - ui) (u(2) - u(O)) (-h') (4.26)
2 /2huC) uC) 2

where

u(C) =u(2) + u(O)
2

and

u(b) - u(2) + u(I)
2

I -h 3 /2
" 0 dx - -. (u(d) - u(c)) - (u(2) - u(O)c I h 2 ) J0

.I, ., ,:., ..,-", • ,.. , : :,,:L_;','
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":" -- cu(3) -u(o) 3 , ,0 )

-a ) - (u(2)- u()) h (4.27)

" where

u~g) -u(4) + u(O)
2

f Otdx i  -a() u~g 2 ~) uO (.

g 0

j'MQ1 dx 1  -9 (u(g)- u(f)) A u~ u(0) h u(4 x I~f h4  h 2

_( u(0) - u(3) t(()h 3

-a ( ) (u(O) u(4)) - . (4.28)a2 
2h 4

-- And finally,

h ._.((D uCO) -u(4) i/

.h., M -a (u(h) - u(g)) - ( ) x h

g

P bu() - (o)) _b (u(O) - u(4)) h (4.29)

The total line integral can be found by adding Eqs. (4.22) through

(4.29). The sum can be simplified to

d! - (u(1) - u(O)) a + (u(2) - u(2))M 2

+ (u(3) - u(O)) 23 + (u(4) - u(O)) a 4. (4.30)

where

L 2h1  4 + 2

,.,..,...-... ,,,... ,...................... ............... .:.-. .... . ., .. ,,
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Ani 1 4- A~ 3_ _ i
2 2h2  ) + 2

:3 = 2h3  2

and bA 3  A___ -
_

:14 ( 2h4  
+  2

where the subscript in I refers to a particular mesh point.

Consider now the area integral suggested by the right hand side of Eq.

(4.9),

-2 'Pu(O)dx 1dx2  2 _ u(O)! pdx 1dx2 .

The evaluation of the are integral yields

-u u(O)1' pdxldX2 - - Qou(O) (4.31)

where

QO 
= ¢2 " '

where

4 1h 2+ p-h2 h3 + p-n 3 h4 + p-n4h 1 )

is the effective mass per unit depth.

Since Eqs. (4.30) and (4.31) are an expanded form of the left and

right hand side of Eqs. (4.9) and (4.13), they can be set equal to each

other. After the subscripts are restored, the expression becomes
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(uk(1) - uk(O)),:ljk + (uk(2) - uk(O))'X2jk + (uk(3) - Uk(O))3%jk

+ (Uk(4 ) - uk(O))a4jk - 0ouj(O)-

whe re

kj = 1.2,3,4

00  0 for J - 4,

the repeated subscript indicate a sum, and the first subscript in CC

refers to a particular mesh point.

The above expression can be rewritten as

Uk(O)Ctjk - Q0 u (O) - U (4.32)

where

Uj = Uk(' 1)Cjk + Uk(2)a2jk + uk( 3 )3jk + uk(4) 4j k ,

%ik MIjk + a 2jk + a3 jk + aL4 Jk

and

~h + h a~ a
L - Cjk 2 +Cjk 4 -

lk 2h 1  2

P h + 22
2jk 2h 2  2

C kh4 + C2kh a(D - k

3jk 2h 3 2
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b h3+b( h jk k-J
C - jk 3 Ik -C J C1

4jk 2h4  2

Equation (4.32) holds at each point in the mesh and can bif written

as a matrix as follows,

a11 0  a12  a13  214 1u() u
aL a2 -Q aL au() j21 o 23 24 2 2(O)1

"'~ 3() -(4.33)

31 32 33 0 34 u3(O) U

L4 1  '4 2  43 u4 (O) . LU

where u(O) 1-3 stand for the particle displacement fields corresponding to

the central mesh point along the direction given by the subscripts, and

U4 refers to the electric potential corresponding to that same central

mesh point. Physically, the fields at a given mesh point are viewed as

being driven by the nearest neighbors. The dashed lines in the matrix

separate those parts coupled by piezoelectricity.

The material tensors ab,c,d, can be written in matrix form as

follows,

ajk k-i 2 3 4

J.,-1 C16  C6 6  C 16

2 C1 2  C2 6  C25 e 12  (4.34)

3 C1 4  C4 6  C45 e 4

1 2  e2 6  e2 5  -21II
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b Jkk- 1 2 3 4bjk -

J-1 C66 C26 C4 6  '26

2 C2 6  C2 2  C2 4  '22 (4.35)

3 C C Ce46 24 C44  24

4 e26 e22 e24  '22

c ikk-i 2 3 4Cjkkl

i.1 C C C e11 16 15 112~ Cl C1 C5 el

2 C16 C66 C56 e16 (4.36)

3 15 C56 C5 5  e15
4 ell el6 el, ll

dik k-l 2 4

JI C16  C12 C14 el2

2 C6 6  C2 6  C4 6  e2 6  (4.37)

3 C5 6  C25  C4 5  e2 5

4 e 6  e e14  - 2

Each tensor is given in terms of the usual reduced subscript material

tensors and are partitioned by the dotted lines to identify those regions

associated with Laplace's equation only, the wave equation without

piezoelectric coupling, and finally the piezoelectric coupling

coefficients 131.

With the proper simplifications the two dimensional method can be

~ n%
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used to do one dimensional analysis.

4.3 Application of the 2D Method

The two dimension numerical method will be applied to a structure

consisting of an electrode, a piezoelectric thin film layer, and a

semiconductor substrate (see Fig. 4.2). The mass and the thickness of

the electrode are going to be considered negligible in this test of the

formulation. The energy trapping effect will then be solely cue to the

finite dimensions of the structure. A standing wave pattern due to the

material discontinuities along the two dimensions under consideration

will be created within the acoustic cavity when an electric potential

field is applied to it.

The particle displacement field perpendicular to the 1,2 plane will

be considered uncoupled from the electric potential field by assumption.

This implies that the (3,4) and (4,3) positions in the tensor of Eqs.

(4.34)-(4.37) will be set to zero. Three fields will be considered in

the piezoelectric region: a potential field and two particle displacement

fields, one along each dimension. In the substrate region, only the two

particle displacement fields will be considered since the potential field

decouples because of the material properties of the substrates used.

For simplicity, the electric fields fringing out the resonator

structure will not be included in this work. It was considered that with

an 8:1 dielectric ratio in favor of the piezoelectric material, the

electric fields escaping to the outside of the cavity region could be

neglected. To achieve the nonfringing effect of the stress field, the

material constant p, c, e will be set to zero. This forces the
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nonpiezoelectric
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Fig. 4.2. Resonator structure and coordinate axis orientation
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continuous across the boundary. Fringing could be accounted for by

considering a mesh larger than the acoustic cavity structure. -or

continuity reasons also, the electric potential field and the force must

be equal along the '2' direction across the nonpiezoelectric-

piezoelectric boundary. The value of the electric potential at the

electrodes, a known independent variable, becomes a part of Eq. (4.33)

(see Fig. 4.3).

The resonator structure of interest requires chat the piezoelectric

crystal C-axis be oriented along the '2' direction. The material tensor

matrices for the piezoelectric material will then have to be transformed

to match the coordinate axis in use. The transformation, see Fig. 4.4,

is simpler to realize when the material tensor elements are written using

the abbreviated subscript notation.

As previously mentioned, the resonator structure will be divided by

a mesh of vertical and horizontal lines. The value of the electric

potential and particle displacement field for each mesh point will be

found by using a modified version of Eq. (4.33). The third column and row

of the system in Eq. (4.33) will be deleted since the particle displacement

field along the '3' direction is considered uncoupled as mentioned. When

expanded through the mesh structure, the set of difference equations can

be written in the form of a sparse banded matrix similar to the one

obtained for the one dimensional case.

For programming purposes, the frequency dependent expression Q will

be normalized to the fundamental parallel frequency f of the thickness
0

longitudinal mode in an all Si structure. The expression for 00was
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Z,2

/Y

Fig. 4.4. Piezoelectric crystal axis rotation, where the X, Y, arnd Z
refer to crystal orientation nomenclature
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defined in Eq. (4.31) as

2-0 U W P. (4.38)
0

The normalization starts by defining a phase k d as0

ko0d =T,

from where

SCl

0 1 = i .(4.39)
-o d pSi

Si Siwhere Cil, p refer to the stiffness coefficient and mass density in Si.

The normalized form of Q0 is obtained after multiplying and dividing Eq.

(4.38) by the square of Eq. (4.39),

2 C Si0 d 2 pi fO 2 (4.40)

The normalized frequency value of the above expression is dependent

on the horizontal to vertical mesh point spacing ratio. When this ratio

is changed, the structure's effective thickness is changed, which in turn

modifies the frequency value by a square root of the spacing ratio

factor.

The particle displacement and potential fields of a ZnO/Si composite

structure will be modeled by a computer program. Since no comparisons

with analytical results can be made for this particular structure, the
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numerical results will be qualitatively evaluated.

As was noted in chapter 1i1, a certain minimun number of mesh points

is needed to determine the field waves with accuracy. Extremely large

matrices can be generated if the same resolution is desired for the two

dimensional case. For this reason, the modeling will be limited to

frequencies close to fundamental where the fields can still be resolved

using a small number of mesh points.

The particle displacement at a particular mesh point will be

represented by a dot. For clarity purposes, only the waves along the

perimeter of the deformed structure will be shown with solid lines. The

undeformed mesh and device geometries are included as reference. The

electric potential field will only be shown in the piezoelectric region

since it is zero in the rest of the structure.

The particle displacement magnitudes shown in Figs. 4.5-4.7, are by

no means proportional to the dimensions of the structure. Even though

the latter are normalized, they are generally in the micron unit range

whereas the particle displacements are in the Angstrom unit range.

Physical considerations suggest that, due to the structure of the

crystals used, the particle displacement field along the '1' direction

and the magnitude of the electric potential field be symmetric with

respect to a vertical axis along the middle of the acoustic cavity. It

is expected that, because of the Poisson's ratio 1 , the particle

It refers to the ratio of the transverse contraction per unit
dimension of a bar to its elongation per unit length, when subjected to a
tensile stress.
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displacement along the '1' direction be larger in the ZnO. If the

particle displacement and potential field results are correct, V*D - U.

.Also, u and T should be continuous across the ZnO/Si interface.

The expected field symmetry can be seen in Figs. 4.5-4.7. The

narrow structure of Fig. 4 .5a) clearly shows the effect of the Poisson

terms as the structure deforms along a direction different than that of

the driving electric potential. It can also be seen from this figure

that the particle displacement along the '1' direction is larger in the

ZnO region. The structure however, is not wide enough to sustain a

standing wave resonance. Such a wave pattern can be observed in Figs.

4 .6a) and 4.7a) as the horizontal to vertical dimensions ratio of the

structures gets larger. Inversely proportional to this ratio is the

effect of the Poisson terms. The electric potential is also symmetric as

shown in Figs. 4.Sb)-4.7b). The electric potential variations along the

X direction are directly related to the magnitude changes in the

particle displacement field. These variations however, are small and

impossible to resolve in the figures.

A remark about the behavior of the particle displacement field in

the Fig. 4.5 structure: the larger particle displacements in the

piezoelectric region are not only due to the Poisson ratio but also to an

acoustic impedance mismatch. It happens that a large part of the wave

generated in the piezoelectric region is reflected at the ZnO/Si

boundary. The mismatch decreases as the structure becomes wider as can

be seen from the behavior of the field in Figs. 4.6 and 4.7.

The no free charge condition was tested by applying the equation

SD - 0 to a mesh point in the piezoelectric region. As expected, the

No NIllWt
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condition holds. The continuity of the particle displacement field

across the boundary can be visually confirmed by looking at the figures.

The waves along both directions seem to be continuous across the material

interface. A qualitative confirmation of particle displacement

continuity is affected by the number of mesh points required. The

continuity of the electric potential field across the discontinuity is

obvious. The electric potential is Zero at the interface, in this

analysis, and so is the electric potential in the nonpiezoelectric

region.

An impedance expression can be found by considering the electrical

properties of the structure at the terminals. As for the one dimensional

case, consider the expression

V
Z =-- (4.41)

'VDa

For the two dimensional case, the electric displacement D at the

electrode can be approximated by

L-1

D - da - a Z D2 (n)

rii

where a is the electrode area and L is the number of mesh points along

the 'I' direction. The electric displacement D2, along the '2'

direction, is given by

L-1 L-1 au au OU ~
1 1 2 a2 C _aE a £

Snml n-I22

F (4.42)
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where the material tensor transformation has already been performed. The

above equation reduces to

L-1 L-1 BU2  4

_ D2 M f. (e33  x2  33 x(443)a., n=1

The impedance expression can be found by substituting Eq. (4.43) into

Eq. (4.41),

-V
Z=

V L-1 e33 2 u 4% JOC g d 2 (nL 
( C3 Bx2 ax2 )  (4.44)

g2 n=i 33 2 X 2

where

Cg Ca
g d2

j -- i,

a is the area of the electrode in the xl, x3 plants, and d2 is the

thickness of the piezoelectric region where the capacitance effect is

concentrated.

For computational purposes the impedance will be normalized to jwCg

Figure 4.8 shows a plot of the magnitude and phase of the impedance at

frequencies around fundamental series and parallel resonances. Only one

resonance spectrum can be observed since just one mode is trapped in the

structure of 12 vertical and 5 horizontal mesh points, a structureII similar to the one shown in Fig. 4.5. Computational considerations were

again a factor in choosing those particular dimensions.
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Fig. 4.8. Magnitude and phase impedance plot of a 12 vertical by 5

horizontal mesh points structure at frequencies around
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intersect at the sixth vertical mesh point from the bottom
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At frequencies below resonance, the normalized impedance tends to I

as in the one dimensional case. Note that the fundamental parallel

* resonance will not occur at a normalized frequency of 1, becaule of the

previous normalization of the frequency to a parallel resonance frequency

of an all Si acoustic cavity. The overtones though, will still occur at

approximate integer multiplies of the fundamental. The series resonance

will vary as given by Eq. 3.24.

The numerical impedance results and Eq. 3.24 can be used to

calculate an effective coupling coefficient K4,

K2  + s

K2

tan s

2from where K - 0.062. This value can be compared to one calculated from

the elastic, dielectric and piezoelectric coefficients of ZnO,

2 m 2,.K 2  =I
I +m 2

2
2 e 33

~where m =,for a longitudinal wave,

and m2 - E 5 for a shear wave.

C C55 C I1

!11

~The effective coupling calculated from the impedance is 35% smaller than

the analytic coupling calculated for a longitudinal wave, and 8% larger

than the analytic coupling calculated for a shear wave. And therefore It

The ffecive ouplng clcuatedfromthe mpednce s 3% s lerta



44

is concluded that the effective coupling coefficient calculated from the

impedance is a combination of the coupling coefficients calculated from

the two waves.
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4.4 Conclusion

A two dimensional difference formulation of the general adisotropic

piezoelectric coupled wave equations has been implemented for the modeling

of the bulk acoustic wave resonator's wave structure. The difference

equations form a coupled set of four equations describing, in a straight

forward manner, the particle displacement and potential fields at each

element in the mesh. The form of the equations indicate that a central

mesh point is driven by its nearest neighbors. When expanded, the

difference equations can be written in the form of a sparse banded matrix

whose solution is obtainable by well-known techniques.

A one dimensional comparison of analytical and numerical solutions

indicates that the finite difference method can be applied with excellent

results.

The two dimensional numerical results satisfy the requirements of no

free charge and symmetry with respect to a vertical line across the

middle of the structure. The continuity of the particle displacement and

potential field across the ZnO/Si interface is visually confirmed. A

quantitative check was not carried out because the number of mesh points

required to do so. A standing wave resonance along the x, direction is

observed when the horizontal dimension is larger than half a wavelength.

A series and parallel resonance confirm that the structure can resonate.

A comparison with analytical results obtained by others, was not possible

because of the difference in analyzed structures.

The two and one dimensional analysis results suggest that the
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numerical method can be successfully used in modeling the two dimensional

pattern inside a bulk acoustic wave composite resonator.
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